Un conjunto S de vectores en un espacio V con producto interior se llama ortogonal si todo par de vectores en S es ortogonal, además cada vector en este conjunto es unitario, entonces S se denomina ortonormal.
Proceso de ortonormalización de Gram-Schmidt
1. Sea B = {v1, v2, . . ., vn} una base de un espacio V con producto interno
2. Sea B´= {w1, w2, . . ., wn} donde wi está dado por:
w1= v1.
Entonces cada solución del sistema es de la forma
Una base del espacio solución es:
B= {v1, v2,} = {(-2,2,1,0), (1,-8,0,1)}.
Para hallar una base ortonormal B´= {u1, u2}, se usa la forma alternativa del proceso de ortonormalización de Gram- Schmidt como sigue.

No hay comentarios:
Publicar un comentario